Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.589
Filtrar
1.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467611

RESUMO

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Assuntos
Fármacos Neuroprotetores , Traumatismos do Nervo Óptico , Animais , Camundongos , Comunicação Celular , Morte Celular , Sobrevivência Celular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474322

RESUMO

Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.


Assuntos
Encefalomielite Autoimune Experimental , Neurite Óptica , Ratos , Animais , Camundongos , Neurite Óptica/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Nervo Óptico/metabolismo , Hipóxia/metabolismo , Fatores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL
3.
Acta Neuropathol Commun ; 12(1): 23, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331947

RESUMO

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Pressão Intraocular , NAD/metabolismo , Glaucoma/genética , Nervo Óptico/metabolismo , Axônios/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
4.
Fluids Barriers CNS ; 21(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178155

RESUMO

It has been proposed that cerebrospinal fluid (CSF) can enter and leave the retina and optic nerve along perivascular spaces surrounding the central retinal vessels as part of an aquaporin-4 (AQP4) dependent ocular 'glymphatic' system. Here, we injected fluorescent dextrans and antibodies into the CSF of mice at the cisterna magna and measured their distribution in the optic nerve and retina. We found that uptake of dextrans in the perivascular spaces and parenchyma of the optic nerve is highly sensitive to the cisternal injection rate, where high injection rates, in which dextran disperses fully in the sub-arachnoid space, led to uptake along the full length of the optic nerve. Accumulation of dextrans in the optic nerve did not differ significantly in wild-type and AQP4 knockout mice. Dextrans did not enter the retina, even when intracranial pressure was greatly increased over intraocular pressure. However, elevation of intraocular pressure reduced accumulation of fluorescent dextrans in the optic nerve head, and intravitreally injected dextrans left the retina via perivascular spaces surrounding the central retinal vessels. Human IgG distributed throughout the perivascular and parenchymal areas of the optic nerve to a similar extent as dextran following cisternal injection. However, uptake of a cisternally injected AQP4-IgG antibody, derived from a seropositive neuromyelitis optica spectrum disorder subject, was limited by AQP4 binding. We conclude that large molecules injected in the CSF can accumulate along the length of the optic nerve if they are fully dispersed in the optic nerve sub-arachnoid space but that they do not enter the retina.


Assuntos
Dextranos , Neuromielite Óptica , Camundongos , Humanos , Animais , Dextranos/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Neuromielite Óptica/metabolismo , Aquaporina 4/metabolismo , Autoanticorpos/metabolismo
5.
Genomics ; 116(1): 110776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163571

RESUMO

The death of retinal ganglion cells (RGCs) can cause irreversible injury in visual function. Clarifying the mechanism of RGC degeneration is critical for the development of therapeutic strategies. Circular RNAs (circRNAs) are important regulators in many biological and pathological processes. Herein, we performed circRNA microarrays to identify dysregulated circRNAs following optic nerve crush (ONC). The results showed that 221 circRNAs were differentially expressed between ONC retinas and normal retinas. Notably, the levels of circular RNA-Dcaf6 (cDcaf6) expression in aqueous humor of glaucoma patients were higher than that in cataract patients. cDcaf6 silencing could reduce oxidative stress-induced RGC apoptosis in vitro and alleviate retinal neurodegeneration in vivo as shown by increased neuronal nuclei antigen (NeuN, neuronal bodies) and beta-III-tubulin (TUBB3, neuronal filaments) staining and reduced glial fibrillary acidic protein (GFAP, activated glial cells) and vimentin (activated glial cells) staining. Collectively, this study identifies a promising target for treating retinal neurodegeneration.


Assuntos
Traumatismos do Nervo Óptico , RNA Circular , Animais , Humanos , Modelos Animais de Doenças , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Retina , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , RNA Circular/genética , RNA Circular/metabolismo
6.
Cells ; 12(20)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887340

RESUMO

Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes ßA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity.


Assuntos
Astrócitos , Mitofagia , Animais , Astrócitos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Nervo Óptico/metabolismo
7.
J Control Release ; 363: 641-656, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820984

RESUMO

Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Ratos , Animais , Axônios/metabolismo , Células Ganglionares da Retina/metabolismo , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Células de Schwann/metabolismo , Modelos Animais de Doenças
8.
Cell Death Dis ; 14(10): 661, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816735

RESUMO

We previously found that global deletion of the mitochondrial enzyme arginase 2 (A2) limits optic nerve crush (ONC)-induced neuronal death. Herein, we examined the cell-specific role of A2 in this pathology by studies using wild type (WT), neuronal-specific calbindin 2 A2 KO (Calb2cre/+ A2 f/f), myeloid-specific A2 KO (LysMcre/+ A2f/f), endothelial-specific A2 KO (Cdh5cre/+ A2f/f), and floxed controls. We also examined the impact of A2 overexpression on mitochondrial function in retinal neuronal R28 cells. Immunolabeling showed increased A2 expression in ganglion cell layer (GCL) neurons of WT mice within 6 h-post injury and inner retinal neurons after 7 days. Calb2 A2 KO mice showed improved neuronal survival, decreased TUNEL-positive neurons, and improved retinal function compared to floxed littermates. Neuronal loss was unchanged by A2 deletion in myeloid or endothelial cells. We also found increased expression of neurotrophins (BDNF, FGF2) and improved survival signaling (pAKT, pERK1/2) in Calb2 A2 KO retinas within 24-hour post-ONC along with suppression of inflammatory mediators (IL1ß, TNFα, IL6, and iNOS) and apoptotic markers (cleavage of caspase3 and PARP). ONC increased GFAP and Iba1 immunostaining in floxed controls, and Calb2 A2 KO dampened this effect. Overexpression of A2 in R28 cells increased Drp1 expression, and decreased mitochondrial respiration, whereas ABH-induced inhibition of A2 decreased Drp1 expression and improved mitochondrial respiration. Finally, A2 overexpression or excitotoxic treatment with glutamate significantly impaired mitochondrial function in R28 cells as shown by significant reductions in basal respiration, maximal respiration, and ATP production. Further, glutamate treatment of A2 overexpressing cells did not induce further deterioration in their mitochondrial function, indicating that A2 overexpression or glutamate insult induce comparable alterations in mitochondrial function. Our data indicate that neuronal A2 expression is neurotoxic after injury, and A2 deletion in Calb2 expressing neurons limits ONC-induced retinal neurodegeneration and improves visual function.


Assuntos
Arginase , Traumatismos do Nervo Óptico , Animais , Camundongos , Apoptose , Arginase/genética , Arginase/metabolismo , Calbindina 2 , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Glutamatos , Compressão Nervosa , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo
9.
Mol Aspects Med ; 94: 101217, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839231

RESUMO

The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.


Assuntos
Glaucoma , Nervo Óptico , Animais , Humanos , Modelos Animais de Doenças , Nervo Óptico/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Axônios/metabolismo , Autofagia/genética
10.
Macromol Rapid Commun ; 44(23): e2300389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661804

RESUMO

Traumatic optic neuropathy (TON) is a severe condition characterized by retinal ganglion cell (RGC) death, often leading to irreversible vision loss, and the death of RGCs is closely associated with oxidative stress. Unfortunately, effective treatment options for TON are lacking. To address this, catalase (CAT) is encapsulated in a tannic acid (TA)/poly(ethylenimine)-crosslinked hollow nanoreactor (CAT@PTP), which exhibited enhanced anchoring in the retina due to TA-collagen adhesion. The antioxidative activity of both CAT and TA synergistically eliminated reactive oxygen species (ROS) to save RGCs in the retina, thereby treating TON. In vitro experiments demonstrated that the nanoreactors preserve the enzymatic activity of CAT and exhibit high adhesion to type I collagen. The combination of CAT and TA-based nanoreactors enhanced ROS elimination while maintaining high biocompatibility. In an optic nerve crush rat model, CAT@PTP is effectively anchored to the retina via TA-collagen adhesion after a single vitreous injection, and RGCs are significantly preserved without adverse events. CAT@PTP exhibited a protective effect on retinal function. Given the abundance of collagen that exists in ocular tissues, these findings may contribute to the further application of this multifunctional nanoreactor in ocular diseases to improve therapeutic efficacy and reduce adverse effects.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Ratos , Animais , Células Ganglionares da Retina/metabolismo , Colágeno Tipo I/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Nanotecnologia , Sobrevivência Celular , Modelos Animais de Doenças
11.
Cell Rep ; 42(10): 113165, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37751356

RESUMO

Retinal ganglion cell (RGC) degeneration drives vision loss in blinding conditions. RGC death is often triggered by axon degeneration in the optic nerve. Here, we study the contributions of dynamic and homeostatic Ca2+ levels to RGC death from axon injury. We find that axonal Ca2+ elevations from optic nerve injury do not propagate over distance or reach RGC somas, and acute and chronic Ca2+ dynamics do not affect RGC survival. Instead, we discover that baseline Ca2+ levels vary widely between RGCs and predict their survival after axon injury, and that lowering these levels reduces RGC survival. Further, we find that well-surviving RGC types have higher baseline Ca2+ levels than poorly surviving types. Finally, we observe considerable variation in the baseline Ca2+ levels of different RGCs of the same type, which are predictive of within-type differences in survival.


Assuntos
Traumatismos do Nervo Óptico , Humanos , Animais , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Cálcio/metabolismo , Axônios/metabolismo , Nervo Óptico/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças
12.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762022

RESUMO

A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor ß pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.


Assuntos
Glaucoma , Disco Óptico , Humanos , Camundongos , Animais , Disco Óptico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Glaucoma/genética , Glaucoma/metabolismo , Retina/metabolismo , Nervo Óptico/metabolismo , Pressão Intraocular , Compressão Nervosa , Expressão Gênica , Modelos Animais de Doenças
13.
Cell Rep ; 42(9): 113038, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37624696

RESUMO

Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.


Assuntos
Glaucoma , Doenças do Nervo Óptico , Humanos , Células Ganglionares da Retina/metabolismo , Osteopontina , Nervo Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo
14.
Exp Eye Res ; 235: 109627, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619829

RESUMO

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Assuntos
Traumatismos do Nervo Óptico , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/farmacologia , Células Ganglionares da Retina/metabolismo , Gliose/metabolismo , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Nervo Óptico/metabolismo , Compressão Nervosa/métodos
15.
Mol Med Rep ; 28(3)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37539744

RESUMO

The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non­ONT group. The untargeted metabolomics were carried out using liquid chromatography­tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid­like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid­related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.


Assuntos
Traumatismos do Nervo Óptico , Humanos , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Metabolômica , Biomarcadores/metabolismo , Lipídeos
16.
J Ocul Pharmacol Ther ; 39(8): 519-529, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192491

RESUMO

Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.


Assuntos
Traumatismos do Nervo Óptico , Nervo Óptico , Animais , Nervo Óptico/metabolismo , Regeneração Nervosa/fisiologia , Glicerofosfolipídeos/metabolismo , Zimosan/metabolismo , Lipidômica , Traumatismos do Nervo Óptico/metabolismo , Mamíferos
17.
Graefes Arch Clin Exp Ophthalmol ; 261(12): 3489-3502, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37199801

RESUMO

PURPOSE: We aim to investigate the effect of Park7 on mice RGC survival and function following optic nerve crush (ONC), and to explore its potential mechanism. METHODS: Wild-type male C57BL/6J mice were subjected to optic nerve crush. Six weeks before ONC, mice received rAAV-shRNA (Park7)-EGFP or rAAV-EGFP intravitreally. Western blotting was used to detect Park7 levels. RGC survival was measured using immunofluorescence. Retinal cell apoptosis was detected using terminal deoxynucleotidyl transferase nick-end-labelling. An electroretinogram (ERG) and the optomotor response (OMR) were used to assess RGC function. Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor (Nrf2), and heme oxygenase 1 (HO-1) levels were assessed using western blotting. RESULTS: ONC injury increased the relative expression of Park7 significantly and decreased RGC survival, the amplitude of the photopic negative response (PhNR), and OMR. Intravitreal injection of rAAV-shRNA(Park7)-EGFP downregulated Park7 expression and was clearly demonstrated by the green fluorescence protein in many retinal layers. Moreover, Park7 downregulation aggravated the decrease in RGC survival and amplitude of PhNR as well as the visual acuity after ONC. However, inhibition of Park7 significantly increased Keap1 levels, decreased the total and nuclear Nrf2 levels, and reduced HO-1 levels. CONCLUSIONS: Park7 downregulation enhanced RGC injury and decreased retinal electrophysiological response and OMR after ONC in mice via the Keap1-Nrf2-HO-1 signaling pathway. Park7 may have neuroprotective effects and could represent a novel way to treat optic neuropathy.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos C57BL , Compressão Nervosa , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Nervo Óptico/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
18.
Fluids Barriers CNS ; 20(1): 21, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944985

RESUMO

BACKGROUND: The meninges, formed by dura, arachnoid and pia mater, cover the central nervous system and provide important barrier functions. Located between arachnoid and pia mater, the cerebrospinal fluid (CSF)-filled subarachnoid space (SAS) features a variety of trabeculae, septae and pillars. Like the arachnoid and the pia mater, these structures are covered with leptomeningeal or meningothelial cells (MECs) that form a barrier between CSF and the parenchyma of the optic nerve (ON). MECs contribute to the CSF proteome through extensive protein secretion. In vitro, they were shown to phagocytose potentially toxic proteins, such as α-synuclein and amyloid beta, as well as apoptotic cell bodies. They therefore may contribute to CSF homeostasis in the SAS as a functional exchange surface. Determining the total area of the SAS covered by these cells that are in direct contact with CSF is thus important for estimating their potential contribution to CSF homeostasis. METHODS: Using synchrotron radiation-based micro-computed tomography (SRµCT), two 0.75 mm-thick sections of a human optic nerve were acquired at a resolution of 0.325 µm/pixel, producing images of multiple terabytes capturing the geometrical details of the CSF space. Special-purpose supercomputing techniques were employed to obtain a pixel-accurate morphometric description of the trabeculae and estimate internal volume and surface area of the ON SAS. RESULTS: In the bulbar segment, the ON SAS microstructure is shown to amplify the MECs surface area up to 4.85-fold compared to an "empty" ON SAS, while just occupying 35% of the volume. In the intraorbital segment, the microstructure occupies 35% of the volume and amplifies the ON SAS area 3.24-fold. CONCLUSIONS: We provided for the first time an estimation of the interface area between CSF and MECs. This area is of importance for estimating a potential contribution of MECs on CSF homeostasis.


Assuntos
Nervo Óptico , Humanos , Nervo Óptico/metabolismo , Tomografia por Raios X , Peptídeos beta-Amiloides/metabolismo
19.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834873

RESUMO

Optic nerve injury causes secondary degeneration, a sequela that spreads damage from the primary injury to adjacent tissue, through mechanisms such as oxidative stress, apoptosis, and blood-brain barrier (BBB) dysfunction. Oligodendrocyte precursor cells (OPCs), a key component of the BBB and oligodendrogenesis, are vulnerable to oxidative deoxyribonucleic acid (DNA) damage by 3 days post-injury. However, it is unclear whether oxidative damage in OPCs occurs earlier at 1 day post-injury, or whether a critical 'window-of-opportunity' exists for therapeutic intervention. Here, a partial optic nerve transection rat model of secondary degeneration was used with immunohistochemistry to assess BBB dysfunction, oxidative stress, and proliferation in OPCs vulnerable to secondary degeneration. At 1 day post-injury, BBB breach and oxidative DNA damage were observed, alongside increased density of DNA-damaged proliferating cells. DNA-damaged cells underwent apoptosis (cleaved caspase3+), and apoptosis was associated with BBB breach. OPCs experienced DNA damage and apoptosis and were the major proliferating cell type with DNA damage. However, the majority of caspase3+ cells were not OPCs. These results provide novel insights into acute secondary degeneration mechanisms in the optic nerve, highlighting the need to consider early oxidative damage to OPCs in therapeutic efforts to limit degeneration following optic nerve injury.


Assuntos
Células Precursoras de Oligodendrócitos , Traumatismos do Nervo Óptico , Animais , Ratos , Traumatismos do Nervo Óptico/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Nervo Óptico/metabolismo , Estresse Oxidativo/fisiologia , DNA/metabolismo
20.
Biomolecules ; 12(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551313

RESUMO

The purpose of this work is to identify mitochondrial optic nerve (ON) lipid alterations associated with sonication-induced traumatic optic neuropathy (TON). Briefly, a mouse model of indirect TON was generated using sound energy concentrated focally at the entrance of the optic canal using a laboratory sonifier (Branson Digital Sonifier 450, Danbury, CT, USA) with a microtip probe. We performed an analysis of a previously generated dataset from high-performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). We analyzed lipids from isolated mitochondria from the ON at 1 day, 7 days, and 14 days post-sonication compared to non-sonicated controls. Lipid abundance alterations in post-sonicated ON mitochondria were evaluated with 1-way ANOVA (FDR-adjusted significant p-value < 0.01), debiased sparse partial correlation (DSPC) network modeling, and partial least squares-discriminant analysis (PLS-DA). We find temporal alterations in triglyceride metabolism are observed in ON mitochondria of mice following sonication-induced optic neuropathy with notable depletions of TG(18:1/18:2/18:2), TG(18:1/18:1/18:1), and TG(16:0/16:0/18:1). Depletion of mitochondrial triglycerides may mediate ON damage in indirect traumatic optic neuropathy through loss energy substrates for neuronal metabolism.


Assuntos
Traumatismos do Nervo Óptico , Camundongos , Animais , Traumatismos do Nervo Óptico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nervo Óptico/metabolismo , Mitocôndrias/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...